Problemas de geometría lineal y espacio afín

1
Nivel
Secundaria
Dificultad
3
 

Hallar la ecuación del plano que pasa por el punto y es perpendicular a la recta

(1)
Solución disponible
Ghiret
 
2
Nivel
Secundaria
Dificultad
4
 

Dados los puntos A(1,2,3), B(-1,2,0) y C(2,3,-1), hallar:

1.La distancia de A a B,

2.El ángulo ACB.

Solución disponible
Ghiret
 
3
Nivel
Secundaria
Dificultad
4
 

Hallar las coordenadas de un vector paralelo a los dos planos, y .

Solución disponible
Ghiret
 
4
Nivel
Secundaria
Dificultad
4
 

¿Son coplanarios los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1)?

2 soluciones disponibles
pod
 
Ghiret
 
5
Nivel
Secundaria
Dificultad
5
 

Dados los planos

(1)

hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.

Solución disponible
Ghiret
 
6
Nivel
Secundaria
Dificultad
6
 

Hallar el simétrico , del punto respecto del plano .

2 soluciones disponibles
pod
 
Ghiret
 
7
Nivel
Secundaria
Dificultad
8
 

Hallar la ecuación de la recta , proyección de la recta

(1)

sobre el plano .

2 soluciones disponibles
pod
 
Ghiret
 
8
Nivel
Primer ciclo
Dificultad
7
 

Dos barras se cruzan bajo un ángulo y se mueven con iguales velocidades y perpendicularmente a si mismas, tal como se indica en la figura. ¿Cuál será la velocidad del punto de cruce de las barras?

Diagrama del problema
Figura 1. Diagrama del problema
Solución disponible
pod
 

Una forma de resolución totalmente geométrica. Sabemos que en dos dimensiones una recta se puede escribir como

(1)

donde es un vector perpendicular a ella y es un punto cualquiera de la recta. Este punto se moverá en la dirección perpendicular, a la velocidad v.

Elijo el eje OX de forma que pasa por la bisectriz de las dos varas. Para la bara superior, tenemos

(2)
(3)

Por lo tanto, la ecuación que nos da la recta ocupada por esta primera barra será, teniendo en cuenta que , es

(4)

Para la segunda barra, está claro que hay que cambiar el valor de la coordenada y del vector perpendicular,

(5)
(6)

Y las mismas consideraciones nos llevan a la ecuación

(7)

El punto de intersección de las barras será aquél que cumpla simultáneamente ambas ecuaciones. Restando (4) y (7) vemos que . Sumándolas

(8)

de donde

(9)

Por lo tanto, la velocidad de la intersección será

(10)
Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2025, La web de Física
Dirección de contacto
Créditos