Problemas de geometría lineal y espacio afín

Nivel: Secundaria

1
Nivel
Secundaria
Dificultad
3
 

Hallar la ecuación del plano que pasa por el punto y es perpendicular a la recta

(1)
Solución disponible
Ghiret
 
2
Nivel
Secundaria
Dificultad
4
 

Dados los puntos A(1,2,3), B(-1,2,0) y C(2,3,-1), hallar:

1.La distancia de A a B,

2.El ángulo ACB.

Solución disponible
Ghiret
 
3
Nivel
Secundaria
Dificultad
4
 

Hallar las coordenadas de un vector paralelo a los dos planos, y .

Solución disponible
Ghiret
 
4
Nivel
Secundaria
Dificultad
4
 

¿Son coplanarios los puntos A(1,2,-1), B(3,0,2), C(1,-1,0) y D(0,2,-1)?

2 soluciones disponibles
pod
 
Ghiret
 
5
Nivel
Secundaria
Dificultad
5
 

Dados los planos

(1)

hallar la ecuación de la recta que pasa por el punto y es paralela a los dos planos.

Solución disponible
Ghiret
 
6
Nivel
Secundaria
Dificultad
6
 

Hallar el simétrico , del punto respecto del plano .

2 soluciones disponibles
pod
 

Llamaremos R a la recta perpendicular al plano que pasa por el punto A. De la ecuación del plano , sabemos que su vector perpendicular es (2, -1, -1), por lo que la recta R se puede escribir como

(1)

El punto de intersección entre la recta R y el plano , que llamaremos , se obtiene substituyendo los valores de , y en la ecuación del plano:

(2)

simplificando,

(3)

con lo que el punto de intersección se encuentra en . Substituyendo en (1), tenemos

(4)

El vector que une los puntos O' y A se obtiene simplemente restando,

(5)

Por simetría, el vector que une el punto con será . Por tanto,

(6)
Ghiret
 

Dados el punto y el plano . El punto simétrico, de respecto de será el punto que cumpla

(1)

donde es el punto de intersección entre el plano y la recta , perpendicular a éste y que pasa por . Matemáticamente:

(2)
(3)

Si expresamos de forma continua

(4)

Y ahora resolvemos dos de las tres igualdades, podemos expresar como intersección de dos planos

(5)

Así podemos reescribir (5.2) como . Para calcular ahora las coordenadas de no tenemos, pues, más que resolver el siguiente sistema, que es compatible determinado:

[ERROR DE LaTeX. Error: 4 ]
(6)

Donde , y . Lo resolveremos mediante la REGLA DE CRAMER, por lo que:

(7)

Así, tenemos que . Si ahora utilizamos este resultado en (1), obtenemos las coordenadas del punto simétrico :

(8)

En partircular para el caso dado,

[ERROR DE LaTeX. Error: 4 ]
(9)
(10)

Por lo tanto,

(11)

Entonces tenemos que

(12)
7
Nivel
Secundaria
Dificultad
8
 

Hallar la ecuación de la recta , proyección de la recta

(1)

sobre el plano .

2 soluciones disponibles
pod
 
Ghiret
 

Una recta viene dada por dos puntos, en este caso, como la recta pedida, es la proyección de la recta sobre el plano usaremos el punto intersección de y ; lo llamaremos . El segundo punto de la recta, , lo obtendremos al proyectar otro cualquiera de la recta , sobre . Esto lo haremos usando una recta , perpendicular al plano y que pase por ; tendrá la dirección de .

Para calcular la intersección de y con seguiremos el siguiente método. Sea la recta .

(1)

Donde para y para .

Si expresamos de forma continua

(2)

Y ahora resolvemos dos de las tres igualdades, entonces podemos expresarla como intersección de dos planos

(3)

Así podemos reescribir la segunda ecuación de [ref]61[/tex] como . Para calcular ahora las coordenadas de no tenemos, pues, más que resolver el siguiente sistema, que es compatible determinado:

[ERROR DE LaTeX. Error: 4 ]
(4)

Donde , y . Lo resolveremos mediante la REGLA DE CRAMER, por lo que:

(5)

Así, tenemos que . Que es el punto intersección de y .

Una vez obtenidos e , la recta buscada, , es la que tiene como vector dirección al vector

(6)

Y pasa por cualquier punto perteneciente al plano . Entonces podremos escribir en forma general como sigue

(7)
Búsqueda rápida de problemas
Categoría
 
Nivel
 
Volver a la página principal
© 2003—2025, La web de Física
Dirección de contacto
Créditos